On the equivariant Tamagawa number conjecture in tame CM-extensions, II
نویسنده
چکیده
We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real elds with Galois group G, where K is a global number eld and G is a p-adic Lie group of dimension 1 for an odd prime p. We attach to each nite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center of the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian. We state a conjecture on the integrality of SKu(L/K) which follows from the equivariant Tamagawa number conjecture (ETNC) in many cases, and is a theorem for abelian G. Assuming the vanishing of the Iwasawa μ-invariant, we compute Fitting invariants of certain Iwasawa modules via the EIMC, and we show that this implies the minus part of the ETNC at p for an in nite class of (non-abelian) Galois CM-extensions of number elds which are at most tamely rami ed above p, provided that (an appropriate p-part of) the integrality conjecture holds.
منابع مشابه
Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture
Let L/K be a nite Galois CM-extension of number elds with Galois group G. In an earlier paper, the author has de ned a module SKu(L/K) over the center of the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian and, in particular, contains many Stickelberger elements. It was shown that a certain conjecture on the integrality of SKu(L/K) implies the minus part of the equ...
متن کاملOn the Equivariant Tamagawa Number Conjecture for Abelian Extensions of a Quadratic Imaginary Field
Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extension of k and let K be a subextension of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h(Spec(L)),Z[Gal(L/K)]). 2000 Mathematics Subject Classification: 11G40, 11R23, 11R33, 11R65
متن کاملOn the Equivariant Tamagawa Number Conjecture for Tate Motives , Part II . Dedicated to John
Let K be any finite abelian extension of Q, k any subfield of K and r any integer. We complete the proof of the equivariant Tamagawa Number Conjecture for the pair (h(Spec(K))(r),Z[Gal(K/k)]). 2000 Mathematics Subject Classification: Primary 11G40; Secondary 11R65 19A31 19B28
متن کاملOn the Equivariant Tamagawa Number Conjecture for Tate Motives and Unconditional Annihilation Results
Let L/K be a finite Galois extension of number fields with Galois group G. Let p be a prime and let r ≤ 0 be an integer. By examining the structure of the p-adic group ring Zp[G], we prove many new cases of the p-part of the equivariant Tamagawa number conjecture (ETNC) for the pair (h(Spec(L))(r),Z[G]). The same methods can also be applied to other conjectures concerning the vanishing of certa...
متن کاملThe equivalence of Rubin’s Conjecture and the ETNC/LRNC for certain biquadratic extensions
For an abelian extension L/K of number fields, the Equivariant Tamagawa Number Conjecture at s = 0, which is equivalent to the Lifted Root Number Conjecture, implies Rubin’s Conjecture by work of Burns. We show that, for relative biquadratic extensions L/K satisfying a certain condition on the splitting of places, Rubin’s Conjecture in turn implies the ETNC/LRNC. We conclude with some examples....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010