On the equivariant Tamagawa number conjecture in tame CM-extensions, II

نویسنده

  • Andreas Nickel
چکیده

We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real elds with Galois group G, where K is a global number eld and G is a p-adic Lie group of dimension 1 for an odd prime p. We attach to each nite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center of the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian. We state a conjecture on the integrality of SKu(L/K) which follows from the equivariant Tamagawa number conjecture (ETNC) in many cases, and is a theorem for abelian G. Assuming the vanishing of the Iwasawa μ-invariant, we compute Fitting invariants of certain Iwasawa modules via the EIMC, and we show that this implies the minus part of the ETNC at p for an in nite class of (non-abelian) Galois CM-extensions of number elds which are at most tamely rami ed above p, provided that (an appropriate p-part of) the integrality conjecture holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture

Let L/K be a nite Galois CM-extension of number elds with Galois group G. In an earlier paper, the author has de ned a module SKu(L/K) over the center of the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian and, in particular, contains many Stickelberger elements. It was shown that a certain conjecture on the integrality of SKu(L/K) implies the minus part of the equ...

متن کامل

On the Equivariant Tamagawa Number Conjecture for Abelian Extensions of a Quadratic Imaginary Field

Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extension of k and let K be a subextension of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h(Spec(L)),Z[Gal(L/K)]). 2000 Mathematics Subject Classification: 11G40, 11R23, 11R33, 11R65

متن کامل

On the Equivariant Tamagawa Number Conjecture for Tate Motives , Part II . Dedicated to John

Let K be any finite abelian extension of Q, k any subfield of K and r any integer. We complete the proof of the equivariant Tamagawa Number Conjecture for the pair (h(Spec(K))(r),Z[Gal(K/k)]). 2000 Mathematics Subject Classification: Primary 11G40; Secondary 11R65 19A31 19B28

متن کامل

On the Equivariant Tamagawa Number Conjecture for Tate Motives and Unconditional Annihilation Results

Let L/K be a finite Galois extension of number fields with Galois group G. Let p be a prime and let r ≤ 0 be an integer. By examining the structure of the p-adic group ring Zp[G], we prove many new cases of the p-part of the equivariant Tamagawa number conjecture (ETNC) for the pair (h(Spec(L))(r),Z[G]). The same methods can also be applied to other conjectures concerning the vanishing of certa...

متن کامل

The equivalence of Rubin’s Conjecture and the ETNC/LRNC for certain biquadratic extensions

For an abelian extension L/K of number fields, the Equivariant Tamagawa Number Conjecture at s = 0, which is equivalent to the Lifted Root Number Conjecture, implies Rubin’s Conjecture by work of Burns. We show that, for relative biquadratic extensions L/K satisfying a certain condition on the splitting of places, Rubin’s Conjecture in turn implies the ETNC/LRNC. We conclude with some examples....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010